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Executive Summary 

Incidents at highway-rail grade crossings, locations where railroad tracks intersect surface streets at grade, are a pri-

mary driver of safety in rail transportation in the United States. Addressing safety at these locations through technology 

is a focus of the Federal Railroad Administration and United States Department of Transportation. Early warning sys-

tems can provide enhanced safety information on train arrivals at grade crossings and blocked crossings. Blocked 

crossings and resulting surface street traffc delays are concerns for emergency services vehicles and, secondarily, the 

general public. Effective management of emergency response resources on the road network requires knowledge of 

when trains will arrive at grade crossings and temporarily disconnect emergency vehicles from parts of the community 

they serve. Generating estimated times of arrival (ETAs) for trains at grade crossings on a long time horizon can be 

used to proactively address surface transportation safety and emergency response management. 

This project investigates train delays to accurately estimate train arrival times at grade crossings to support in-

vehicle driver alerts shown, for example, on personal navigation devices. However, variability of travel times on the 

U.S. freight rail network is high due to large network demands relative to infrastructure capacity, especially when traffc 

is heterogeneous. This project is the frst look at the potential for high fdelity freight rail data to be used for arrival 

time prediction. The prediction of arrival times uses train-positioning information, properties of the train, properties 

of the network, and properties of potentially conficting traffc on the network as input. The work is composed of 

two phases. The frst phase focuses on the development of a historical algorithm to accurately model delays using 

train-positioning information. The second phase of the project develops online algorithms to integrate real-time train 

position information into the forecasts. Amtrak data and over two years of CSX freight rail data are used to test and 

validate the proposed algorithms. This report presents the data used in this problem and details on feature engineering 

and construction for ETA predictions. It also highlights fndings on the dominant sources of runtime variability and the 

most predictive factors for ETA. Results on ETA prediction are presented for various sets of input features, machine 

learning algorithms, and prediction locations. ETAs at control points located close to grade crossings are dramatically 

improved over baseline algorithms, particularly for predictions made multiple hours from a crossing that are useful for 

proactive safety measures. 
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Chapter 1 

Introduction 

1.1 Grade crossing arrival times 

In 2015, there were nearly 3,000 collisions between vehicles and trains that resulted in approximately 230 fatalities 

at grade crossings, locations where roadways and pathways cross railroad tracks at grade. In the United States today, 

there are 216,000 grade crossings (Federal Railroad Administration, 2018). Grade crossings are the second high-

est contributor to rail-related fatalities, after trespassing (Federal Railroad Administration Offce of Safety Analysis, 

2018); these two causes cover over 90% of rail-related fatalities. 

Grade crossings are not just problematic because of safety concerns related to collisions with vehicles. Addition-

ally, occupancy time at grade crossings can be large, which causes congestion on surface streets and, notably, delays 

and blockages for emergency vehicles. Notably systematic problems have been observed where congested tracks lead 

to grade crossing blockages of multiple hours (Surface Transportation Board, 2016). Legal disagreements have oc-

curred between state and local entities attempting to assert control over rail grade crossings, but control has rested at 

the Federal level for train movements (Wronski, 2008). This is true even at grade crossings with roads owned and 

operated by cities and states. 

The Federal Railway Administration (FRA) has undertaken research on the use of intelligent transportation system 

technology at grade crossings to enhance safety and warnings by providing more complete information from positive 

train control (United States Department of Transportation and Federal Railroad Administration, 2007). This tech-

nology framework, shown in Figure 1.1, was formalized in IEEE Standard 1570-2002 (IEEE Vehicular Technology 

Society, 2002). Emergency vehicle preemption of road signals is also well-studied and has shown to be effective and 

have minimal negative impacts, but emergency vehicles do not have the ability to preempt or otherwise infuence rail 

operations (Nelson and Bullock, 2000). Any proactive intervention framework requires that estimated times of arrival 
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Figure 1.1: IEEE Standard 1570-2002 highway-rail intersection interface overview (IEEE Vehicular Technology 
Society, 2002). 

(ETAs) of trains at grade crossings be generated, motivating our present work. 

Grade crossing safety is a challenging problem because freight and passenger trains have large stopping and ac-

celeration distances due to their mass and speed. This problem is compounded by shared corridors, high-speed rail, 

and increasingly long and heavy freight trains (Chadwick et al., 2014). Large freight trains can require up to a mile of 

emergency stopping distance, well outside the range of what is reasonable to prevent most grade crossing incidents. 

Additional risks are created by collisions, as they have the potential to cause train derailments (Chadwick et al., 2012). 

Compliance with grade crossing safety measures is not absolute and enforcement is diffcult. Drivers do not have 

good comprehension of safety marking and devices installed at grade crossings (Richards and Heathington, 1988). 

Moreover, drivers will fail to notice or obey grade crossing warnings (Meeker et al., 1997). There are numerous means 

by which to improve driver behavior and, thus, safety at grade crossings. Results from Project Lifesaver have shown 

a positive effect by reducing collisions at grade crossings through awareness and education (Savage, 2006). Detection 

and enforcement by video camera has also been an area of study (Kim and Cohn, 2004). Predictive models are able to 

identify particularly problematic or at-risk crossings from a safety standpoint (Medina and Benekohal, 2015). 

Safety at grade crossings has been, and continues to be, a priority of the FRA and the United States Department 

of Transportation (USDOT). In 2015, the FRA announced a partnership with Google to incorporate grade crossing 

locations into mapping data that many drivers use to navigate (Tumulty, 2015). Brady (2003) incorporated potentially 

blocked rail crossings into routing during emergency response and management. Also related is the problem of facility 

location planning for effective emergency response to incidents that include railroad-related events (Ouyang et al., 

2018). These large concerns over grade crossing safety demonstrate the importance of proactively addressing safety 

at grade crossings with respect to the impending arrival of freight trains. For early warning systems or advanced 
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routing systems to be useful for passenger, commercial, and emergency vehicles, accurate ETAs must be generated for 

train arrivals at grade crossings. Arrival data at grade crossings is generally not a subject of collection by railroads or 

public agencies. Additionally, there still exists a technological gap to anticipate train arrivals at grade crossings on a 

longer time horizon, up to multiple hours. ETA prediction on the necessary longer time horizons requires more than 

just real-time positioning of a train. It requires the consideration of each individual train, the larger rail network, and 

interactions between trains on the network. 

1.2 Arrival time estimates 

Given the importance of ETA prediction for proactive safety, we briefy describe the causes and characteristics of 

variability on rail networks. 

The rail network in the United States has signifcant infrastructure capacity limitations that cause congestion of 

the rail traffc. Few rail corridors contain exclusively double (or more) track that allows simultaneous bi-directional 

traffc (Murali et al., 2010). In comparison, the double and triple track railroads in Europe provide for double the train 

density of U.S. rail networks (Oliver Wyman, 2016). Many U.S. corridors contain a single track with short sections 

of double track known as sidings, where trains may meet or pass each other. These movements (i.e., meets, passes) 

are implemented in the railroad signaling system but directed by human dispatchers. Dispatchers are experienced 

with working on specifc track corridors, but movements on sidings require planning and precise timing to achieve 

effcient operations (Vromans et al., 2006; Kecman and Goverde, 2013). Freight volume is expected to increase in 

the United States, so either infrastructure capacity must be increased or operational improvements must be made to 

increase capacity (Cambridge Systematics, 2007; Weatherford et al., 2008; Association of American Railroads, 2013). 

In addition to the track infrastructure constraints, there are numerous other factors that can contribute to variability 

of the runtime on a track segment. Traffc heterogeneity and the train priority differences directly infuence both the 

runtime of trains and also the variability in the runtime (Dingler et al., 2009, 2010). Physical characteristics of trains 

such as the length, tonnage, and power further infuence the runtime due to track grade, track curvature, and siding 

lengths (Dingler et al., 2009). The ability of a train to complete a trip and exit the line of road (i.e., the track segments 

connecting distant terminals) is also infuenced by the degree of congestion in the arrival terminal. This is compounded 

by the possible actions required for the train in the terminal, such as refueling, inspection, switching of cars, or crew 

change (Dingler et al., 2009; Higgins et al., 1995). Railroad operating strategies such as dynamically scheduled trains 

and maximizing train length are particularly vulnerable to delay (Lu et al., 2004; Mu and Dessouky, 2011). 

In the presence of runtime variability, ETAs are also useful for railroads to improve real-time decision making and 

the effciency of the network (Hertenstein and Kaplan, 1991; Hallowell and Harker, 1998). For example, future train 

schedules can be continually updated to provide new train plans to allow traffc to fow smoothly between terminals 
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on the network (Kraay and Harker, 1995). Although there are many techniques available to derive optimal schedules 

(see Goverde (2005) for a thorough review), the schedule may be very sensitive to delays when the network is near 

capacity. High capacity utilization leads to more complex dispatching where small delays are created, leading to larger 

deviations from the train plan (Khoshniyat and Peterson, 2017); this is referred to as knock-on delay (Vromans et al., 

2006; Murali et al., 2010; Goverde and Meng, 2011). 

Highly variable runtimes increase operational uncertainty for the railroad and for other transportation systems that 

are affected by them at grade crossings and otherwise. On the rail network, propagation of delay to other trains is 

signifcant (D’Ariano and Pranzo, 2009), and there are large direct costs incurred due to additional operating time 

alone (Lovett et al., 2015). Delays on the rail network directly infuence non-rail transportation services, such as 

emergency vehicles as already mentioned, if trains must stop and block traffc at grade crossings (Estes and Rilett, 

2000). If accurate, real-time ETAs are made available, revisions to the operating plan can be implemented, and surface 

street transportation services can be re-routed. 

1.3 Problem statement and related work 

The main focus of the present work is the prediction problem for ETAs at grade crossings on U.S. freight railroads at 

a long time horizon using real-time data, for use in safety-critical early warning and decision support systems. The 

estimation problem requires new ETAs to be produced as time elapses and the train progresses down the line of road. 

Each time the train reaches one of a number of fxed locations on the track, data is collected and a new estimated travel 

time to a given grade crossing is produced. 

To produce the ETA estimate, a variety of routinely collected and maintained data sources available to freight 

railroads are used. This includes track geometry data (containing grade and curvature information, single and multi-

track territory, length of sidings, etc.), historical runtime profles of all trains, properties of all trains (such as length 

and tonnage), and crew records. We demonstrate and evaluate prediction methods with commonly-used control point 

timing data from the railroad, because grade crossing arrival data is not available. These control point data represent 

the best available large-scale data source for U.S. freight rail that has been available for research. Using other data 

sources, such as GPS or dispatch data, grade crossing prediction models can be constructed equivalently to the models 

demonstrated for control points. We explain this modeling choice and its implications further in Section 3.4 and 

Chapter 7. 

Several methodologies to produce ETAs are available, including microscopic simulation (Petersen and Taylor, 

1982; Şahin, 1999; Marinov and Viegas, 2011), analytical approaches (Assad, 1980), and data-driven techniques (Bon-

sra and Harbolovic, 2012). Due to the complexity of the freight rail network (which limits the accuracy of analytical 

abstractions) and the diffculty in capturing all delay inducing factors in a simulation based model (e.g., decisions made 
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by human dispatchers, special cases involving priority elevation, unplanned maintenance, and weather), a data-driven 

approach is proposed in this work (Li et al., 2014). This approach is made possible through access to a large and com-

prehensive freight rail dataset also described in the report. Well designed data-driven techniques are able to generalize 

to similar but unseen scenarios to those represented in the training dataset, making them useful for prediction of ETAs 

during typical operations (Marković et al., 2015). Note, however, that the methods may not extrapolate well to rare 

and extreme events such as heavy network disruptions, especially when few or no examples exist in the training data. 

Many ETA prediction methods for rail transit, buses, and cars have also relied on data-driven algorithms (Altinkaya 

and Zontul, 2013; Mori et al., 2015) similar to those discussed for freight rail. Liu et al. (2017) achieved station-level 

arrival time prediction improvements for urban rail transit using neural networks. Sun et al. (2018) also used neural 

networks in the prediction of large delay events for transit services. Cats and Loutos (2016) evaluated real-time bus 

arrival prediction schemes with respect to real-world performance and found that defciencies in prediction accuracy 

still exist in practice. Zhang et al. (2016) studied travel time characteristics of emergency vehicles and noted the 

importance of vehicle routing, which is affected by grade crossing arrival time prediction. 

There are, however, fundamental differences in operations between rail transit, buses, and cars, and the rail freight 

traffc considered in our work. Rail and bus transit operations are characterized by frequent stops where delays occur 

due to the passenger boarding and alighting process (Chien et al., 2002). Buses are also delayed en-route between 

stations due to traffc signals and other vehicular traffc, which are delay factors for cars as well. Importantly, in the 

bus system, the vehicular traffc represents an external disturbance to the system. Finally, rail transit vehicles, buses, 

and cars are generally physically homogeneous (e.g., they have similar performance characteristics and consequently 

similar dynamics) to other vehicles in their respective classes. These properties are in contrast to freight rail traffc, 

where the trains are quite heterogeneous with respect to tonnage, power, length, and priority, all of which affect 

centralized dispatching decisions and, ultimately, delays. 

Several lines of research are related to the problem of freight rail ETA prediction. We briefy summarize the most 

closely related works, and direct the interested reader to the comprehensive reviews available in the works by Bonsra 

and Harbolovic (2012) and Gorman (2009). The majority of freight trains operate according to a schedule that is 

constructed in an offine manner and robust to some random unplanned disturbances (Mu and Dessouky, 2011; 

Vromans et al., 2006; Khoshniyat and Peterson, 2017). When extreme disturbances cause the original schedule to 

deteriorate, online rescheduling measures must be implemented to account for the delay and to maintain robustness to 

further delay (D’Ariano et al., 2007; Hallowell and Harker, 1998; Khadilkar et al., 2017). Numerous efforts are aimed 

at understanding and quantifying the causes of delay that infuence scheduling, rescheduling, and predictability (Murali 

et al., 2010; Chen and Harker, 1990; Dingler et al., 2010). Delay is typically formulated in terms of deviation from a 

train schedule or historical performance, but it can be extended to arrival time prediction for individual trains (Bonsra 

and Harbolovic, 2012). 
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Several works have proposed to empirically produce delay or runtime estimates using historical data for passenger 

rail networks. Kecman and Goverde (2013) propose an ETA prediction framework for passenger rail arrival time pre-

diction using track occupancy data for confict evaluation. In Kecman and Goverde (2015), track occupancy variables 

are used along with schedule and delay data in the real-time prediction of running time and dwell time estimation for 

passenger rail in the Netherlands. Statistical models including robust linear regression, tree-based non-linear regres-

sion, and random forests are each applied to running time and dwell time estimation and an emphasis is placed on 

the importance of location-specifc models. Chapuis (2017) uses artifcial neural networks to predict arrival times 

of frequent passenger trains using historical train and station delays. Compared to the proposed work, the ETAs are 

evaluated in the Netherlands and France, respectively, on high-priority passenger traffc (Furtado, 2013; Pouryousef 

et al., 2015), which also operates with higher punctuality compared to the freight or passenger traffc in the United 

States (Amtrak, 2016). Marković et al. (2015) use support vector regression on passenger railways in Serbia in order 

to identify relationships between delay at a station and various internal factors (i.e., related to the train and to the 

railroad) and external factors. The predictive ability of SVR is compared to that of an artifcial neural network and 

is shown to have better performance and maintain interpretability of the model. Wang and Work (2015) estimate 

passenger rail delays on the Amtrak passenger rail network in the United States using vector regression techniques 

and only historical runtimes between passenger stations. The regression problems are formulated in both a historical 

and online perspective, but the feature set for prediction is limited and does not contain any data on the freight traffc, 

which constitutes the majority of traffc on the shared line of road in the United States. Online methods presented for 

passenger rail, accessible because of the data stream created by station arrivals and departures, have not been fully 

extended to freight rail. Additionally, the magnitude of delay and ETA error for passenger rail is typically on the order 

of minutes, while delay and ETA error for non-priority freight rail traffc may exceed multiple hours. 

The most closely related estimation works on freight trains are the works of Gorman (2009) and Bonsra and 

Harbolovic (2012). In Gorman (2009), an econometric analysis of free-running and congestion-related factors are 

used to identify the primary causes of delay. The data is partitioned by geographic area and priority groupings. 

Congestion-related factors, such as meets, passes, and overtakes, are found to have the largest effect on delay. Bonsra 

and Harbolovic (2012) predict runtimes for individual freight trains in an offine setting using regression. Prediction 

improvements are attained when estimated at the time of departure. The regression model used train and network 

parameters and a historical runtime averaging technique for evaluating model performance. 

1.4 Outline and contributions 

The main contribution of this work is to show how to pose the ETA prediction problem at grade crossings on a 

rail network as a machine learning regression problem and to provide results indicative of predictive performance 
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across a range of time horizons and various machine learning algorithms. ETA updates occur at fxed timing points 

on the network and can be generated corresponding to any other timing point, which can be grade crossings, or to 

major destinations on the network. We provide practical insights by highlighting the datasets available to perform the 

prediction and describing some of the feature engineering required when the feature vectors change in time and space. 

We present a set of data features and several machine learning regression algorithms used to achieve more accurate 

ETAs than common statistical methods yield. Finally, the resulting models are discussed in detail with respect to their 

performance. 

Due to multiple approaches taken in this work, we frst present a single origin-destination modeling framework that 

is straightforward to understand, followed by a unifed all-origin framework that can leverage larger training datasets 

and predict ETAs from multiple locations in a single model. Both of these models are applied frst to ETA predictions 

made to train destinations at yards and terminals, so that we may benchmark machine learning techniques against 

existing algorithms used by the railroads and compare the performance of various machine learning algorithms. We 

then use these same models, which outperform existing techniques used in practice, to make predictions to grade 

crossings. Also included in this report is preliminary work on ETA prediction for passenger trains. This work is 

included in Appendix A. While it demonstrated improved prediction accuracy, the publicly available Amtrak data was 

not suffciently informative, because it has course resolution and does not cover freight trains operating on the same 

tracks that are known to have a signifcant impact on passenger train performance. 

Specifcally, the remainder of the report is organized as follows. Chapter 2 presents the framework used to process 

and operate on the various data sources and the preliminaries for the machine learning regression. Chapter 3 discusses 

the datasets and the work that is necessary to process the data for use in the machine learning framework. Chapter 4 

details the model experiments that are conducted as well as the means by which to evaluate them. Chapter 5 describes 

the process for tuning and evaluating one example of the origin-destination models, which is then extended to models 

across the full testing route; results are given for models using select feature combinations. Chapter 6 formulates and 

tests a unifed framework to combine models and leverage larger quantities of data, and also compares performance 

of a variety of algorithms. Chapter 7 directly addresses the problem of prediction of ETAs at grade crossings using 

the lessons learned on prediction to a single destination. We provide a summary and discuss future lines of research in 

Chapter 8. Appendix A discusses the ETA prediction for passenger trains using both a historical and online data-driven 

approach with Amtrak data. 
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Chapter 2 

Framework and Problem Formulation 

This chapter briefy describes the machine learning framework used for ETA estimation. It reviews general machine 

learning terminology and parameters specifc to the algorithms, both used later during analysis and discussion. 

2.1 ETA Machine learning framework 

The problem of predicting an estimated time of arrival for a train from an origin point to a destination point on the 

rail network is posed as a supervised machine learning regression problem. The goal of the regression problem is 

to predict the true runtime y(i) ∈ R of a train i given the properties of train i, the network, and other traffc on 

the network, which are contained in the feature vector x(i) ∈ Rn . Given a dataset of m trains with true runtimes 

Y = [y(1), y(2), y(3), · · · , y(m)]T ∈ Rm and corresponding feature vectors X = [x(1), x(2), x(3), · · · , x(m)], 

where X ∈ Rn×m , the machine learning regression problem is to fnd a mapping fw : Rn → R parameterized by 

w such that fw(x(i)) is an accurate predictor of y(i). In general, supervised machine learning regression uses a set 

of training data {Xtr, Ytr} (where the subscript tr is used to indicate the training data) to learn the function fw, by 

minimizing a prediction error measure between 1 fw(Xtr) and Ytr over the m records in the training data. 

The machine learning model fw must generalize (i.e., make good predictions on data that has not been used to 

train the model), in order to maintain high accuracy on new data and to avoid overftting the training data. To test the 

degree of generalization, the accuracy of the prediction is assessed on hold out test data {Xte, Yte}, which is not used 

to train the model. 
1With a slight abuse of notation, we overload the function fw to also operate on the entire dataset Xtr . 
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2.2 Generating ETAs on a freight rail network for grade crossings 

The central diffculty of posing the train ETA prediction problem into the framework above stems from the fact that 

many of the features used for prediction change in time and in space as the train moves towards the destination. For 

example, the amount of traffc on the line of road will change as trains enter and leave the line of road. The number of 

available sidings on a route in single track territory also changes across the route and as other trains occupy or vacate 

sidings. If a single model is used for all origin-destination predictions in the network, it may be diffcult to predict 

area-specifc delays (e.g., due to local dispatching decisions and route characteristics) that may not occur throughout 

the network; results pertaining to origin-destination specifcity are discussed in Section 5.2. Moreover, because some 

features change over time (as described above), while others may not (e.g., train priority), construction of an unbiased 

training dataset is a nontrivial engineering task. For example, one cannot simply create a new training data point each 

time a single property of a train changes (e.g., corresponding to a new feature vector) without biasing the training data, 

since the feature vector still corresponds to a single train trip. 

To address these diffculties, we propose to build a distinct regression model for each origin-destination pair for 

which predictions are required, where the ETA corresponds to the estimated time of arrival at the next destination 

(i.e., major terminal) for trains passing the corresponding origin point on the network. The resulting models are all 

of the same form and differ only in feature weights and hyper-parameters. Because the models are independent, 

each model can be trained using all trips that pass between the corresponding origin-destination pair by constructing 

features according to the state of the train and network at the time the train reaches the origin point. Localized and 

geography-specifc performance effects may be captured in the individual models without explicitly constructing them 

in the feature vector. For example, longer travel times will be observed for heavy or under-powered trains in areas of 

high track grade. Feature construction can also vary between models (e.g., in dimensionality) since each uses a custom 

dataset built for the origin-destination pair. 

The primary disadvantage of building a model for each origin-destination pair in the network is the number of 

models required. In a rail network with k nodes, at minimum k2 origin-destination predictors could be required 

(possibly more if multiple paths exist between each origin-destination pair). In contrast to road networks where the 

number of nodes and the number of viable paths between any two node pairs may be large, rail networks have fewer 

nodes and less path redundancy. In practice, few locations are relevant destination points from a given origin because 

a single route (excluding small deviations for sidings) is typically used to connect two points on the network. The 

freight rail network in the United States is sparsely connected in most regions, particularly with regard to high volume 

routes; isolated corridors connect major terminal points on the network where most crew changes and switching work 

occur. Therefore, the number of origin-destination paths for which predictions are required is tractable. In the area 

of study in this work, there exist 35 points that can serve as origin points. This results in 35 ETA updates for a train 

16 



OS-point:	a0	 a1	 a2	 a3	

(a) Track infrastructure representation assembled from GIS data.

v1	 v2	 v3	vertex:	v0	

(b) Vertex-edge graph constructed from track infrastructure data.

Figure 2.1: Graph vertices align with OS-points and each track segment between them is represented by a graph edge
in each direction. Double track areas and sidings, therefore, are represented by four graph edges.

traversing the corridor. There are less than four practical destination points from each origin point, which results in at

most 140 predictors as opposed to 352 = 1,225. For a realistic sized network, we estimate a total of 10,000 models

are necessary for all ETA predictions.

In order to map spatiotemporal train data to the network topology, infrastructure data can be reconstructed into a

directed graph format, G = (V, E) where V is a set of vertices and E is a set of directed edges (Kecman and Goverde,

2015). Vertices are points where the track merges and splits (e.g., endpoints of sidings). Grade crossings are each

associated with a single vertex. Data on passing trains is recorded at OS-points, which are fixed locations v ⊂ V;

OS-points serve as the origin points in the origin-destination models. Directed edges represent track segments across

which trains travel between OS-points and a direction of travel. This alignment between track infrastructure and the

constructed graph is shown in Figure 2.1. In the figure, OS-points are denoted a0, a1, a2, and a3 with corresponding

graph vertices v0, v1, v2, and v3. All tracks are delineated between these OS-points with multiple tracks such as the

main line and siding between a1 and a2 remaining distinct. Pairs of directed edges representing each delineated track

segment allow different runtimes and feature values in each direction of travel, which is necessary when properties

such as grade are considered (Bonsra and Harbolovic, 2012). This results in two directed graph edges for a single track

and four or more edges for an area of multiple tracks such as the siding between vertices v1 and v2. In this formulation,

all trains can be routed on the graph across their unique path considering track usage (e.g., siding track versus main

line track). Data can be gathered on the behavior of trains for each directed edge with respect to speed, grade, train

occupancy, and other location/direction specific attributes. Also, features that consider estimates of the positions of

multiple trains and track topology can be mined from this data.
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2.3 Support vector regression 

The regression problem of predicting an ETA from a vector of features is proposed to be solved via support vector 

regression (SVR), introduced in (Drucker et al., 1997). Support vector regression is a popular machine learning al-

gorithm grounded in statistical learning theory and for which training is effcient due to the convexity of the training 

problem. The optimal model parameters in linear SVR are straightforward to interpret and are unique (Burges and 

Crisp, 2000), which can be invaluable in the application of the algorithm. Additionally, the SVR formulation provides 

for extension to nonlinear regression via kernel functions. The intent of this work is not to demonstrate superiority of 

SVR to other algorithms, but to apply a well-studied algorithm to the data-driven ETA prediction. The precise algo-

rithm that should be implemented in a live production system would depend on performance and additional practical 

factors, such as computation time, memory requirements, and more. Other applicable algorithms include linear ridge 

regression (Hoerl and Kennard, 1970), elastic net regression (Zou and Hastie, 2005), kernel ridge regression (Saunders 

et al., 1998), random forests (Kecman and Goverde, 2015), and neural networks (Marković et al., 2015), to name a 

few. 

The training step in a generalized regression problem may be written as: 

min L(fw(X) − Y ) + kwk, 
w 

(2.1) 

where L is a loss function measuring the quality of the predicted output, fw(X), relative to the true output, Y , and 

the feature weights w are penalized via a norm to avoid overftting the training data. This characteristic is informally 

referred to as model fatness (Basak et al., 2007). 

SVR is a special case of (2.1) and uses a two-norm on w and in the simple case assumes an affne predictor of the 

T form fw(x) = w x + b, where w ∈ Rn and the offset b ∈ R. SVR uses an ε-insensitive loss function | · |ε, which 

penalizes prediction residuals r = y − fw(x) larger than a threshold defned by ε. The loss function is constructed 

as (Cortes and Vapnik, 1995): ⎧ ⎪⎪
⎪⎪
⎪⎨0 if |r| ≤ ε 

|r|ε = ⎪ otherwise. ⎩|r| − ε 

(2.2) 

The ε-insensitive loss function quantifes the distance between a prediction and the band created by y ± ε. For a 

vector of residuals, the sum of the element ε-insensitive losses are used as the loss function. 

The training step in SVR can be reformulated as computing the weights w and offset b by solving the following 
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convex optimization problem: 

(2.3) 

m 

minimize 
1 kwk22 + C 

X 
(ξ(i) + ξ ∗ (i)) 

w,b,ξ,ξ∗ 2 
i=1 

subject to Ty(i) − w x(i) − b ≤ ε + ξ(i), ∀i  

T w x(i) + b − y(i) ≤ ε + ξ ∗ (i), ∀i 

ξ(i), ξ ∗ (i) ≥ 0, ∀i 

where ξ, ξ∗ ∈ Rm are variables introduced to rewrite the ε-insensitive loss (2.2) as linear inequalities. The total 

ε-insensitive loss (i.e., accuracy of model ft) is balanced against model fatness by a scalar factor C. 

The optimization problem (2.3) can be solved via the dual problem, yielding the optimal dual variables α, α∗ ∈ Pm Rm . These dual variables are related to the feature weights such that w = (α(i) − α∗(i))x(i). This results in a i=1 

predictor of the form: 
mX 

f(x) = (α(i) − α ∗ (i))x(i)T x + b; 
i=1 

(2.4) 

see (Scholkopf and Smola, 2001) for a comprehensive description. 

When the ETAs in the training data are not linearly related to the features, an alternative strategy is to transform 

the training data into a much higher dimensional feature vector denoted by Φ(x), where Φ: Rn → RN with N >> n, 

which can then be used for regression. The new predictor becomes: 

mX � �T 
f(x) = (α(i) − α ∗ (i))Φ x(i) Φ(x) + b. 

i=1 

(2.5) 

Interestingly, it is not necessary to explicitly defne the mapping to the high dimensional space, since only the inner 

product ΦT Φ is needed in the regression function. The inner product can instead be defned through a kernel func-� �T 
tion K(x(i), x(j)) = Φ x(i) Φ(x(j)). The use of the kernel function directly in (2.5) is known as the kernel 

trick (Burges, 1998) in machine learning. In the present work, we adopt the radial basis function (RBF) kernel (Boser 

et al., 1992) of the form: � � 

(2.6) 
  1 2 

K(x(i), x(j)) = exp − x(i) − x(j) , 
2σ2 2 

where σ is a parameter controlling the decay rate of the kernel, effectively limiting the infuence that any single 

observation may have on the trained model. 
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Figure 2.2: Simple Feed-forward neural network with one hidden layer. 
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2.4 Random forest regression 

Random forest regression is an ensemble algorithm that constructs a series of regression trees using randomly sampled 

subsets of the training data for each tree and a subset of available data features for splitting within trees (Breiman, 

1984, 2001). Regression trees are constructed by splitting data samples at each node in the tree according to values 

of input features. Each node resulting from the split more effectively isolates data samples with similar output values. 

The best split is determined by a minimization of resulting prediction error. Nodes are no longer split when the 

number of samples in the node falls below the minimum or the decrease in prediction error falls below a defned 

threshold. The predicted output value for each terminal node in the tree is calculated from the corresponding training 

samples that terminated in the node. The predictions made by individual trees are averaged to arrive at the ensemble 

prediction. Combining many weak learner regression trees in the random forest predictor has shown to be an effective 

methodology and helps avoid overftting (Liaw and Wiener, 2002; Oruganti et al., 2016). 

2.5 Deep feed-forward neural network model 

A neural network consists of multiple neurons organized in layers, with individually weighted connections between 

neurons in adjacent layers. At minimum, a feed-forward neural network consists of three distinct layers: the input 

layer, one hidden layer, and an output layer consisting of one node for regression, as shown in Figure 2.2, or multiple 

nodes for classifcation. A deep feed-forward neural network has multiple hidden layers. The depth of the model 

is determined by the number of hidden layers. After being processed at the hidden layer nodes, their outputs are 

forwarded to the output layer which then makes a prediction, according to its activation function. This feed-forward 

process is characteristic of the neural network and is used for making predictions, given an input vector. The training 

phase of a neural network is comprised of selecting the optimal weights for each of the connections between the 
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neurons. More specifcally, given the input vector at the input layer, and the known output that actually occurred, 

the problem is defned as choosing the weights for the connections between neurons so as to minimize the error 

between the prediction and actual observation. Gradient-based optimization is used for training the neural network 

and choosing weights. 
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Chapter 3 

Feature construction and data cleaning 

steps 

This chapter discusses the process of combining and mining datasets to be used in feature construction. The data 

used in this work is described frst, before describing the features that are calculated from the datasets which are 

subsequently used to train the machine learning ETA algorithm. Due to the proprietary nature of the data, some values 

are reported in relative terms. 

3.1 Description of raw data 

This work uses a collection of datasets describing the rail network and operations from December 1, 2014 through 

January 31, 2017 inclusive. It consists of freight train movement, train car operations, crew, and locomotive data in 

the CSX Transportation network extracted from dispatching, operations, and signaling data. 

The movement data consists of records generated at OS-points between terminals. The data includes the track 

on which the train was reported and the time at which the train triggered the OS-point. This dataset also contains 

information about track mileage covered, direction of travel, and the next destination at which the train is scheduled to 

stop. OS-points have spacing between 1 and 10 miles and typical temporal spacing between 1 and 20 minutes. Typical 

runtimes for the full route vary between 5 hours and the maximum crew time of 12 hours. 

The train car operations data details the actions performed on the train once it enters a terminal from the line of 

road. This includes the switching operations (i.e., picking up and setting out rail cars) that are referred to as train 

work, inspections, refueling, and crew changes that are scheduled to occur and may incur delay in getting track space 

in the terminal. The planned work schedule, as well as adherence to the schedule, is reported in this data. Changes in 
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Figure 3.1: GIS network view depicting a portion of the Nashville division, with multi-track segments shown in bold 
red lines and single-track segments in thin blue lines. The primary study route is bounded by the red dashed line. 

OS-points at Murfreesboro and Cowan are also shown on the map, each of which corresponds to a point at which the 
ETA to Chattanooga is updated. 

physical train characteristics (e.g., total number of cars, length, tonnage) are inferred based on the work reported on 

the train. 

Crew data contains information about the crew assigned to the train, the originating location, the time at which 

they were called on duty, and the time at which the crew must legally go off duty (i.e., 12 hours after going on duty). 

The time between a crew going on duty and the departure of the train is non-negligible and is referred to as on duty 

time to departure (ODTOD). Crew information is important because the maximum crew on-duty requirement must 

always be satisfed, even at the large expense of stopping a train and transporting a replacement crew to fnish the trip. 

Locomotive assignment data indicates the equipment and total locomotive power available on each train, which 

can be important for predicting delays in regions with high grades. 

This work also uses GIS data describing the physical infrastructure of the network, which includes individual 

tracks, switches, mileposts, and terminals. All locations referenced in the movement, work, crew, and locomotive 

data map to physical infrastructure locations, such as track mileposts and control points. Reconciling these GIS data 

sources is necessary to gather data on the number of tracks and siding locations and lengths on each route and build 

the network graph described in Section 2.2. Figure 3.1 depicts this data, along with the distinction between single 

track sections (shown by the thin blue lines) and multiple track sections or sidings (shown by the bold red lines) for 

a portion of the rail network. The primary study area, from Nashville, TN, to Chattanooga, TN, is bounded by the 

red dashed line. There are 14 distinct sections of multiple track in the study area. Four OS-points at North and South 

Murfreesboro and North and South Cowan are also shown on the map, each of which corresponds to a point at which 

the ETA to the rail yard in Chattanooga is updated. 

Grade crossing raw data is in the form of GIS polygons, which correspond to the track in the coordinate refer-

ence system (CRS). See Figure 3.2 for an example of one of these grade crossing data points, where the crossing is 
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Figure 3.2: A single grade crossing boundary delineated by the orange shaded area and overlaid on a satellite 
imagery basemap. The tracks at this location are shown by the blue line (main line track) and red line (siding track). 

delineated by the orange boundary. 

3.2  Data  cleaning  and  standardization  tasks 

A variety of data cleaning and data transformation tasks are necessary to organize the input for any prediction algo-

rithm. With over 10,000 trips on the study route in a two year period, we decide to neglect trips with data completeness 

issues or data errors instead of devising a scheme to impute values; this resulted in the discarding of approximately 

10% of trains. Errors consist of felds t hat c ontain m issing d ata, o r f elds th at co ntain il logical va lues. Examples 

include non-physical train lengths, or an arrival time prior to the train departure time. 

The GIS data is examined to ensure proper connectivity and accuracy before being transformed into the network 

graph. Common errors encountered include duplicate geometries, disconnected track components, and minor misla-

beling of infrastructure components. Many errors are automatically identifed and resolved, while some errors require 

manual correction. 

The detection and resolution methods for each of these data felds are summarized in Table 3 .1. Each is imple-

mented at the time of data mining and feature construction, so that an origin-destination dataset is clean at the time of 
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Table 3.1: Data cleaning and standardization steps 

Data feld Data error Data correction 

Train arrival time arrival time ≤ departure time discard train 

Train length length ≤ 0 discard train 

Train tonnage tonnage ≤ 0 discard train 

Train horsepower horsepower ≤ 0 discard train 

Crew assignment no crew assigned to train discard train 

Crew on duty time on duty time ≥ train departure time discard train 

Track segments polylines connect spatially, but not by end- detect spatial connection, re-
point ID solve endpoint ID mismatch 

Duplicate GIS elements identical geometry encoded strings check connectivity of each, 
keep most connected element 

model training. 

3.3 Handling of recrewed trains 

In the process of early prediction efforts and data exploration efforts, a dominant source of runtime variability has been 

discovered. Specifcally, we fnd that recrewed trains (i.e., a train that did not reach its destination before the crew 

reached its maximum on-duty time and needed a relief crew) defne the dominant source of runtime variability on the 

study route. 

To further investigate the impact of recrews on train variability, all trains are ex post facto labeled as either recrewed 

or non-recrewed. Less than 10% of the trains on the route were recrewed. The two classes (recrewed and non-recrewed 

trains) are separated and descriptive statistics are calculated for each class at each of the 35 OS-points, which are spread 

at irregular intervals across the route depicted in Figure 3.1. The standard deviation of runtimes is used to quantify 

the runtime variability of trains in each class as well as the variability of all trains in the dataset (not separated on 

recrew). As shown in Figure 3.3, the runtime variability of the recrewed trains is several times larger than that of 

the non-recrewed trains across all OS-points, which are ordered from Nashville to Chattanooga; runtime variability 

is expressed as a relative value to protect proprietary operational properties in the data. Despite recrewed trains 

representing less than 10% of the trips, they represent 53% of the variability within the dataset of all trains, when 

averaged across the full route. 

Recrewed trains introduce high variability in runtime and their runtimes are not predictable by features inside the 

scope of the train and network state features (e.g., status of crew pools from which to reassign and the locations and 

availability of taxis to transport the crew to the train are signifcant factors and are not in our dataset). It is not a good 

25 



Figure 3.3: Comparison of variability in runtime, between recrewed trains, non-recrewed trains, and all trains, for 
each origin OS point, ordered from Nashville to Chattanooga. 

Standard deviation is normalized by the largest variance OS-point, OS-point #21. OS-point IDs increase from 
Nashville (1) to Chattanooga (42). 
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idea to include the recrewed trains in the dataset because they have extreme delays, and predicting the duration of the 

delays is not possible without additional features (e.g., location of the replacement crew). If the recrewed trains are 

included in the training data, the model will be harder to train because the large error caused by the few but extreme 

outliers cannot be reduced under any parameter set of the model. Of course, if an outlier robust machine learning 

algorithm were used in place of the SVR approach, it would be possible to leave the recrewed trains in the training 

dataset, where they would be effectively ignored. It is likely, however, that the circumstances leading to a recrew 

will enable its preemptive classifcation and could be captured with the available data. It should be noted that features 

calculated from crew information contain the implicit knowledge that the train was not recrewed, given that the training 

data was cleaned of recrewed trains; this fact further motivates the need for preemptive classifcation of recrew events. 

3.4 Grade crossings data and locations 

Grade crossings are frequent elements of the rail network. They are spaced at uneven intervals on virtually every 

segment that is operated; for example, see a sample of grade crossings outside of Nashville, TN, in Figure 3.4. For 

each grade crossing, data exists on its precise location and extents, as shown in Figure 3.2. However, train timing is not 

reported at precise grade crossing locations, only at nearby OS-points through the dispatching system. Therefore, we 

associate each grade crossing by minimum distance with an OS-point, at which we have train timing data to train and 

test models. The number of grade crossings associated with each OS-point between Nashville, TN, and Chattanooga, 

TN, are shown in Figure 3.5, which shows a very uneven distribution. 
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Figure 3.4: Sample of grade crossings, denoted by ’x’ symbols, outside of Nashville, TN. 

Figure 3.5: Number of grade crossings associated by minimum distance with OS-points between Nashville, TN, and 
Chattanooga, TN. 
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Table 3.2: Summary of implemented scalar features. 

Feature Notation Description 

Train length λ(i) The total length of locomotives and cars of train i. 

Train tonnage µ(i) The total mass of locomotives and cars. 

Train horsepower per ton η(i) Total horsepower of locomotives divided by train 
tonnage, µ(i). 

Train priority ρ20(i) Priority ranking on a 1-20 scale. 
(high-resolution) 

Train priority ρ5(i) Five priority classes are constructed by aggregating 
(medium-resolution) the high-resolution priority ranking. 

Train priority ρ3(i) Three priority classes are constructed by aggregat-
(low-resolution) ing the high-resolution priority ranking. 

Crew time remaining γ(i) Amount of time remaining that the current train crew 
can legally work. 

On duty time to departure θ(i) Time between crew on duty time and train departure. 

Full traffc count τ(i) Count of trains on the remaining line of road. 

Directional traffc count τω(i), τψ(i) Count of trains on the remaining line of road, cate-
gorized by direction of travel (i.e., in the same direc-
tion, ω, or in the opposite direction of travel, ψ). 

Prioritized directional traffc τω,α(i), τω,β (i), Count of train on the remaining line of road, cate-
count τψ,α(i), τψ,β (i) gorized by both direction of travel and priority rela-

tive to that of the train being predicted (i.e., lower or 
equal priority, β, or higher priority, α). 

Available sidings π(i) Count of sidings on route with length greater than 
that of train i. 

3.5 Calculated features 

This section lists and discusses the features that are generated from the raw data in Section 3.1 and used to train 

machine learning algorithms in ETA prediction. A summary of the implemented scalar features appears in Table 3.2. 

These features include six train characteristics, two features that capture the state of the crew on each train, and 

multiple scalar features quantifying the network characteristics and traffc. We also propose features to describe the 

traffc state of the network in the geographic vicinity of prediction as vector quantities. Each element of the traffc 

feature corresponds to the traffc at a track segment between adjacent OS-points. The network traffc state is quantifed 

in terms of occupancy, direction, and priority; these are summarized in Table 3.3. All of the features chosen for 

exploration are based on extensive discussions with operations research personnel from CSX Transportation. 

The priority of a train is determined by its cargo (e.g., bulk, merchandise, automotive, intermodal), its type of 

service (e.g., local, yard, road), and its load status (e.g., loaded, empty). The priority ranking is fully defned for all 
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Table 3.3: List of calculated and implemented track segment feature series, which correspond in dimension to the 
segmentation of the remaining route, and details for each. 

Feature Notation Description 

Track segment 
occupancy 

O(i) = [O1(i), · · · , Ol(i)] Vector of elements denoting whether a segment on the 
origin-destination route, indexed 1 to l, is occupied by 
another train; non-zero when occupied. 

Occupying train 
direction 

D(i) = [D1(i), · · · , Dl(i)] Denotes the direction (same or opposite) of a train 
occupying a track segment on the origin-destination 
route, indexed 1 to l; zero if segment is unoccupied. 

Occupying train 
priority 

P (i) = [P1(i), · · · , Pl(i)] Assigns high-resolution train priority values to a train 
occupying a track segment on the origin-destination 
route, indexed 1 to l. Higher value for high priority 
train; zero if no train. 

Relative priority of 
occupying train 

R(i) = [R1(i), · · · , Rl(i)] Non-zero when a train occupying a track segment on 
the origin-destination route, indexed 1 to l, has higher 
priority than the train for which the ETA is being pre-
dicted. Refects likelihood of meet/pass delay. 

Track segment 
occupancy around 
origin point 

G(i) = 
[G−1(i), · · · , G−h(i)] 

Indicates track segment occupancy for segments −1 
to −h around the origin point, but not included in the 
primary route (segments 0 to l); captures trains that 
may enter the primary route and pass/overtake. 

Track segment 
occupancy around 
destination point 

E(i) = 
[El+1(i), · · · , El+p(i)] 

Indicates track segment occupancy for segments l + 1 
to l + p around the destination point, but not included 
in the primary route (segments 0 to l); captures trains 
that may enter the primary route and confict during 
the trip. 
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Figure 3.6: Frequency distributions of various scalar features in the training dataset taken at OS-point #1, outside of 
Nashville. 
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(a) Distribution of train lengths. (b) Distribution of train tonnage values. 
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(d) Distribution of crew time remaining for 
active train crews. 

trains that run on the network and includes exceptions and specialty trains that run infrequently. The priority ranks are 

aggregated to different levels of granularity. At the highest resolution, all trains are placed into one of twenty priority 

classes. The relative priority ranking is understood to be non-linear based on its construction. The high resolution 

ranking is aggregated to a medium-resolution ranking using fve priority classes and a low-resolution ranking of three 

priority classes. For example, scheduled merchandise trains have signifcantly higher priority than bulk/unit trains 

(e.g., loaded coal train), but in medium- and low-resolution classifcations, the two types will get the same priority 

designation. The priority ranking and aggregations were provided by CSX Transportation. 

The physical train characteristics such as train length and train tonnage are calculated by examining the work data, 

which contains the train dimensions after the most recent work was completed. The distributions of these parameters 

(shown in Figures 3.6a and 3.6b) demonstrate that there is a preferred maximum threshold for train length, but that train 

tonnage is subject to a signifcant tail of very heavy trains. Train length (together with the track geometry) factors into 

train runtime, in part because it determines the number of sidings in which a given train may ft. While the majority of 

sidings are suffciently long for any train, some sidings are too short to accommodate the longer trains. This disparity 

is refected in Figure 3.6c, where it is shown that the majority of trains are able to use 80-100% of sidings, while some 

trains ft into only 50-70% of the sidings. 
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The most recent crew change can be identifed in the crew data, which is then used to calculate the crew time 

remaining (i.e., the maximum time the current crew may continue to operate the train). The distribution of the crew 

time remaining is shown in Figure 3.6d. Ideally, this parameter should be maximal when starting a route to give the 

best chance of completing the trip without needing a replacement crew. Note also in Figure 3.6d that all trains used to 

construct this distribution are not recrewed. When combined with the expected train runtime, it is possible to compute 

a crew slack time (i.e., the difference between the crew time remaining and the expected runtime). If the slack time is 

negative, but is not recrewed, it means the train ran the route faster than the average train. As the slack time becomes 

more negative, it is increasingly likely that the train will need to be recrewed. In terms of feature construction, the 

crew time remaining feature and the slack time feature are equivalent under min-max normalization (which is applied 

to all features in the dataset). Consequently, only the crew time remaining feature is used in the models presented in 

this work. 

It is expected that the traffc along the route infuences the runtime, and consequently we propose several methods 

to quantify the traffc. First, we construct six scalar measures of traffc, each of which consider only the track along the 

route between the current location of the train and the destination. The six measures differ in the degree of granularity. 

For example, in the frst two measures, we count all other trains (including local trains), which are categorized based on 

their direction of travel (e.g., same direction, subscript ω, or opposite direction, subscript ψ, relative to the train being 

predicted). We also consider the fact that the priority of the traffc may also infuence the prediction. Consequently we 

propose four traffc features that enumerate the directional and prioritized traffc counts ({same, opposite} and higher 

priority, subscript α, or {same, opposite} and lower/equal priority, subscript β, where the priority is relative to the train 

being predicted). It should be noted that the traffc considered in these counts, and in the more granular segmented 

traffc features, is based on all trains on the network (e.g., including local trains and recrewed trains). 

We further examine the potential that the precise location of the traffc may improve the prediction accuracy of 

the models by considering a higher dimensional representation of the traffc. In the most basic treatment, we can treat 

each of l track segments between the train and the destination as an element in the feature vector, which is zero if no 

train is present on the segment or 1 if a train is present. Consequently the dimension of the track occupancy feature is 

equal to the number of track segments that are considered. For example if no trains are present between the present 

train and the destination, a vector of zeros of length l (one dimension per segment) would capture the traffc state. 

In addition to the track segments between a train origin point and the destination, we consider the track segments 

in the area around the origin (h track segments) and around the destination (p track segments) that are not part of 

the origin-destination route segments (l track segments, as stated earlier). This results in the segments from origin 

to destination being indexed 1 through l, segments around the origin indexed −1 to −h, and segments around the 

destination indexed l + 1 to l + p. The area considered around the origin and around the destination is limited to a 

distance of 50% of the origin-destination route length, which determines the quantities h and p. On our study route 
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a0 al!

segments around origin 
origin-destination route segments segments around destination 

track	segment	 a0	–	a1	 a1	–	a2	 a2	–	a3	 a3	–	a4	 a4	–	a5	 a5	–	a6	 …	

a1 a2 a3 a4 a5 a6 OS-point: 

segment occupancy = [       0            1             0             1             1             0         …     ] 

occupying train direction = [       0           1.0           0           0.5           0.5           0         …     ] 

occupying train priority = [       0           0.2           0           1.0           0.6           0         …     ] 

occupying train relative priority = [       0           0.0           0           1.0           0.0           0         …     ] 

T1 T2 
T3 T0 

Train	 Direc*on	 Priority	 Rela*ve	priority	

T0	 East	 0.8	 n/a	

tr
affi

c	 T1	 West	 0.2	 lower	

T2	 East	 1.0	 higher	

T3	 East	 0.6	 lower	

Figure 3.7: Segment-wise features are calculated for the area around an origin point, on the origin-destination route,
and around the destination. Each is segmented by OS-points, a0 through al on the origin-destination route in this

case. The occupancy feature is first constructed, followed by a vector corresponding to the properties of the
occupying train when it is present.

of approximately 140 miles, we consider track segments beyond the destination within 70 miles and track segments

around the origin within 70 miles, each excluding the track segments on the 140-mile origin-destination route.

Segment occupancy can be encoded as a vector, each element of which is non-zero when another train is present

in a track segment at the time that a prediction is made for a train at the origin point. Likewise, trains that are present

on these segments can be described with respect to their relevant properties, namely direction of travel, priority, and

relative priority. Each track segment vectors composed of elements that are strictly zero for unoccupied segments and

positive for segments occupied by other trains. This process of describing the traffic state via network segments and

traffic properties is illustrated in Figure 3.7, for origin-destination route, only. Predictions are made at the origin OS-

point a0 and OS-points delineating segments are labeled a0 through al. An example traffic scenario for the moment

at which a prediction is made for train T0 at the origin is shown with trains T1, T2, T3. The relevant features (i.e.,

direction and priority) of each train are listed in the figure table. The features for trains T1, T2, T3 are mapped to the

track segments corresponding to the location of each train resulting in four feature vectors for segment occupancy,

occupying train direction, occupying train priority, and occupying train relative priority.
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Chapter 4 

Model implementation and evaluation 

This chapter describes a set of experiments and a metric to assess the machine learning framework described above. 

The feature sets used in the models are composed of the features described previously in Section 3.5. 

4.1 Description of single origin-destination models 

Numerical experiments are performed with concentration on a single route, shown by the dashed area in Figure 3.1, 

in the Nashville division of the CSX Transportation network. The network contains a mix of single and double track 

segments, highly heterogeneous traffc, and high volume relative to capacity. Over 50 distinct trains can be seen on 

the route in a day and more than 20 of these will typically traverse the full route. The route represents one of the most 

challenging segments on which to estimate ETAs within the CSX Transportation network. Without loss of generality 

of the methods, the present analysis is restricted to common train types with suffcient trips in the two year dataset 

and includes the automotive, merchandise, and intermodal trains. These train types have differing priorities, and 

consequently have distinct behaviors in meet/pass movements and when delays occur. The dataset for trains running 

the full study route in the correct direction of travel initially contains over 10,000 trips. When the dataset is fltered by 

train type, recrewed trains are removed, local trains and trains with intermediate work are eliminated, and data errors 

and incomplete records are removed, there are still approximately 4,200 trips. 

The selected route is composed of 35 points along the 140 mile route for which an ETA to the destination must be 

produced. For each of the 35 ETA problems, a total of fve models are implemented and compared. The models include 

the baseline median predictor algorithm as well as four SVR-based algorithms. Many combinations of algorithm type 

and feature set have been explored, and the presented models are representative of the model type and performance. 

For example, the various priority features have each been evaluated for predictive performance by performing single-

feature model experiments and ρ5(i) is found to be the most informative. 
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The exact model confgurations are as follows: 

• Model 0: baseline median predictor where f(x(i)) = median{y(i) | y(i) ∈ Ytr} 

• Model 1: linear SVR with all scalar features (length, tonnage, hp/ton, priority, crew time, ODTOD, traf-

fc counts, and sidings ft); the feature vector is constructed as: x(i) = [λ(i), µ(i), η(i), ρ5(i), γ(i), θ(i), 

τ(i), τω (i), τψ(i), τω,α(i), τω,β (i), τψ,α(i), τψ,β (i), π(i)], and where x(i) ∈ R14 . 

• Model 2: linear SVR with all scalar features plus track segment occupancy vector x(i) = [λ(i), µ(i), η(i), 

ρ5(i), γ(i), θ(i), τ (i), τω(i), τψ(i), τω,α(i), τω,β (i), τψ,α(i), τψ,β (i), π(i), O1(i), · · · , Ol(i)], and where x(i) ∈ 

R14+l . 

• Model 3: linear SVR with all scalar features and all track segment traffc vector quantities (occupancy, direction, 

priority, and relative priority on origin-destination route; occupancy around origin point; occupancy around 

destination point) x(i) = [λ(i), µ(i), η(i), ρ5(i), γ(i), θ(i), τ(i), τω(i), τψ(i), τω,α(i), τω,β (i), τψ,α(i), τψ,β (i), 

π(i), O1(i), · · · , Ol(i), D1(i), · · · , Dl(i), Q1(i), · · · , Ql(i), R1(i), · · · , Rl(i), G−1(i), · · · , G−h(i), 

El+1(i), · · · , El+p(i)], and where x(i) ∈ R14+4l+h+p. 

• Model 4: RBF kernel SVR with all scalar features and all track segment traffc vector quantities x(i) = 

[λ(i), µ(i), η(i), ρ5(i), γ(i), θ(i), τ(i), τω(i), τψ(i), τω,α(i), τω,β (i), τψ,α(i), τψ,β (i), π(i), O1(i), · · · , Ol(i), 

D1(i), · · · , Dl(i), Q1(i), · · · , Ql(i), R1(i), · · · , Rl(i), G−1(i), · · · , G−h(i), El+1(i), · · · , El+p(i)], and 

where x(i) ∈ R14+4l+h+p. 

4.2 Description of unifed all-origin model 

The unifed all-origin model uses the same feature set as that used by the individual origin-destination models, de-

scribed in Tables 3.2 and 3.3. The feature set is therefore a mix of categorical, binary, and continuous quantities. Data 

records for trains at all locations on the network segment with respect to a single destination are used in the unifed 

model dataset. The selected prediction origin location is included as a one-hot encoding of the route locations. 

The resulting feature space has 184 dimensions and the number of labeled data records is over 170,000, each of 

which represents a feature vector captured at a timing point for the train and the corresponding runtime label. The 

training and testing data is min-max normalized before being used in the models. 
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4.3 Model evaluation 

The error metric used to evaluate a given model and to select model hyper-parameters is mean absolute error (MAE), 

defned as: 

(4.1) 
m

1 te X 
MAE = |f(x(i)) − y(i)|, 

mte i=1 

where f(x(i)) and y(i) correspond to the predicted runtime and true runtime of train i, respectively, and mte denotes 

the number of records in the testing dataset. It follows that numerically low MAE scores are better than high scores. 

Under MAE, all prediction errors are treated equally, regardless of the corresponding true runtime. Performance of 

each model is compared to that of the historical median predictor, Model 0. The improvement for each model is given 

as the reduction in the MAE relative to the historical median predictor. 

The neural network models were implemented using Keras (Chollet et al., 2015) with TensorFlow (Abadi et al., 

2015) backend. Support vector regression, random forest, and statistical models were built using Scikit-Learn (Pe-

dregosa et al., 2011). All models were tested on a computer with 16-core 3.4 GHz processor, 64 GB of RAM, and 

Nvidia GTX 1080 GPU. Note that neural network models were run on the GPU, while other models were run on the 

CPU. Neither the preprocessing nor the model testing are parallelized, but could easily be implemented as such on a 

larger scale due to dataset and model independence. 

The data processing steps are completed once for each origin-destination pair and the feature set is stored in a 

database, which takes approximately 5 minutes per dataset. Building the feature set is the most time consuming step 

in the process, due primarily to the size of the database of raw data. Adding more features or new data does not require 

reprocessing of previous data. Model experiments are performed by loading the feature set, selecting the desired 

data, normalizing features, and training the model and testing the performance via cross-validation. Model training 

is accomplished in approximately 1 minute for the 4,200 trips, with prediction on test data taking 0.005 seconds per 

prediction. If implemented network-wide, the computation requirements scale linearly with the number of origin-

destination ETA predictions due to trivial parallelization, and could be handled on any modern distributed computing 

platform. 
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Chapter 5 

Results for individual origin-destination 

models 

This chapter frst presents the process for choosing hyper-parameters C and ε in (2.3) for a single origin-destination 

model with scalar features. We then analyze the series of linear models trained with scalar features on the full 35-

OS-point route and the differences between them, specifcally with respect to feature weights. Performance results are 

then shown for each model in Section 4.1 across the route, which demonstrate the impact of feature richness and the 

nonlinear kernel. 

5.1 Choosing hyper parameters for a single model 

For each origin-destination model, the SVR parameters, C and ε are chosen as a result of the training and testing 

process. This is performed using a dataset containing approximately 4200 trips using a fve-fold cross validation with 

an 80/20 training/testing data split. On each fold of the cross validation, the parameter space is explored using a grid 

search that explores all combinations of parameters within the bounds of each. The results are aggregated across the 

fve folds and the optimal parameter combination is chosen based on the mean minimum testing error. The trained 

model must be checked for suitability such that it generalizes well to testing data. This check is done using validation 

curves for C and ε and a learning curve for the amount of data used to train the model. 

The interpretation of these parameters as well as analysis of training and testing behavior kept the search space 

limited. The ε parameter is directly related to residual values between f(x(i)) and y(i) and, therefore, can be limited 

to a search space proportional to the normalized spread of the true outputs y(i). The C parameter penalizes the model 

training error, summed across all observations x(i), relative to the model fatness, given by the two norm of feature 
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weights. We normalize C such that it is scaled by the number of features and inversely scaled by the number of 

observations in the training dataset. This maintains the impact of the parameter across models with different feature 

dimensions and data dimensions. 

A validation curve explores training and testing scores across a range of a model parameter, with other parameters 

fxed. Using a fxed C value of 1, the validation curve for the ε parameter in Figure 5.1a shows relatively little effect of 

ε value on training and testing scores. Mean training scores are plotted in the solid orange line, with the narrow shading 

showing a single standard deviation above and below the mean of training scores in cross-validation. The mean testing 

scores and distribution of scores are plotted with the dashed purple line and shading. Within the acceptable parameter 

range, high values nor low values make an appreciable effect on testing MAE. Approaching ε = 0, the ε-insensitive 

loss disappears and the algorithm converges to linear regression. When ε is set too high, the minimization of prediction 

errors focuses only on observations with exceptionally high residual prediction values. In comparison, the value of C 

has signifcantly higher impact on model score. The validation curve is also shown in Figure 5.1b with ε fxed at 0.1 

and plotted with common normalized MAE score for comparison. Small values of C emphasize model fatness, but 

result in poor training and testing scores because model complexity is low. Large values of C achieve low training 

MAE but generalize poorly to the testing data because of overftting. 

Validation curves show sensitivity for individual parameters. The optimal parameters are chosen simultaneously 

by evaluating the model on the grid space of all parameter combinations (C ∈ [10−5 , 104], ε ∈ [0, 0.3]). For the 

origin-destination model at grade crossings closest to OS-point #1, the optimal values that minimize MAE are found 

to be C = 0.75 and ε = 0.05. Under these parameters, the difference between the training and testing scores is less 

than 3% of the training error, which indicates that the model is not overftting the training data. 

The learning curve for a model shows the convergence of training and testing performance by increasing the 

amount of data available to build the model. The curve is analyzed after hyper-parameters have been chosen. The 

learning curve shows the MAE score against the number of training examples available to the model. With smaller 

amounts of data available, training scores will be improved, but at the expense of the model generalizing poorly to 

testing data. The learning curve in Figure 5.2 indicates that the model is trained on a suffcient amount of data because 

the curves converge before the full training dataset is used. The mean training and testing scores are denoted by the 

lines with the shaded areas showing one standard deviation in each direction between cross-validation folds. The 

model training and testing occur at fve equally spaced divisions of available data between 10% and 100%, inclusive 

(i.e., 10%, 32.5%, 55%, 77.5% and 100%). The disparity in training and testing scores begins at over 40% of the 

training score when using only 10% of the available data, and decreases to less than 3% when 100% of the available 

data is used. 

For any SVR model with a linear kernel, the feature weights can be interpreted meaningfully in both magnitude 

and sign. The feature weights are recorded at all cross validation folds and for each origin-destination model to 

37 



Figure 5.1: The validation curves for the ε and C parameters on a single origin-destination model are plotted with a 
common MAE score axis, which is min-max normalized across both parameters. The sensitivity of the model to ε is 

relatively low compared to that of C. 
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Figure 5.2: The learning curve for a single origin-destination model shows convergence of the training and testing 
error scores given increasing availability of observations in the full dataset. The MAE score values are min-max 

normalized. 
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Table 5.1: Average feature weights for 5-fold cross validation on origin-destination prediction and Pearson 
correlation coeffcient between feature and runtime, calculated at OS-point #1 (Nashville). Exact model output 

weights are normalized by absolute sum. Features are ordered by highest mean absolute feature weight. 

Feature Mean absolute Pearson correlation 
feature weight coeffcient 

Priority, ρ5 0.346 0.294 
Crew time remaining, γ 0.137 -0.124 
Tonnage, µ 0.110 0.290 
Traffc opposite direction lower/equal priority, τψ,β 0.089 0.226 
Available sidings, π 0.067 0.007 
Total traffc, τ 0.055 0.135 
Traffc opposite direction, τψ 0.050 0.085 
Length, λ 0.047 0.014 
Traffc same direction, τω 0.040 0.121 
Horsepower per ton, η 0.019 -0.148 
Traffc opposite direction higher priority, τψ,α 0.011 -0.114 
Traffc same direction higher priority, τω,α 0.010 0.140 
Traffc same direction lower/equal priority, τω,β 0.009 0.275 
On duty time to departure, θ 0.008 0.066 

assess the relative impact of each feature. The feature weights are normalized by absolute sum within each model, Pn such that |wj | = 1, to allow comparison between models (recall that the dimension of some traffc features j=1 

depends on the number of segments between the origin and destination) and are reported in absolute terms for ranking 

in terms of absolute impact. The feature weight rankings for the origin-destination model at grade crossings closest 

to OS-point #1 (the beginning of the route in Nashville) are shown in Table 5.1. For this model, the effect of train 

priority is the dominant feature; this is supported by the distinct runtimes between priority classes at this distance from 

the destination. Crew time remaining has a large impact because it can affect the runtime of a train at this distance 

if the train experienced signifcant delay leaving its last terminal. Tonnage also play a large role due to the lower 

overall performance of the train during acceleration and deceleration. Features with particularly low impact include 

traffc counts separated by direction and priority, which is an overly simplistic view of the traffc state on long routes. 

Horsepower per ton also has less of an impact because the train power is typically sized in this region (which contains 

signifcant grades) to avoid delays due to under powered trains. 

5.2 Model training across route 

The hyper-parameter selection process and model evaluation is replicated for origin-destination predictions made at 

each of the 35 OS-points on the full route. Because the C parameter is normalized by the training data size and 
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feature dimension, and the ε parameter demonstrated little sensitivity, the optimal set of hyper-parameters found by 

the selection process varied little across the route. 

The main fnding is that feature weights show signifcant variability across the route. This supports the idea that 

dispatching techniques have fundamental differences based on relative location of the train to a terminal point and that 

unique origin-destination models capture some of this nuance. Noting the important result that the feature weights w 

learned from SVR are globally optimal and unique (Burges and Crisp, 2000), any change in feature weights from the 

optimal origin-destination specifc weights will result in a loss of accuracy of the predictor. 

All scalar feature weights are shown at each prediction point in Figure 5.3. The mean feature weight resulting from 

cross-validation at each location is represented by the lines and min-max ranges for each are shown by the shaded area 

around the lines. In prediction of the full route, at OS-point #1, the factor most heavily impacting train runtime is 

priority. Other factors certainly play into the dispatching decisions made for the route, but do not appear to have strong 

relationships far from the destination. Closer to the destination, traffc counts and train tonnage are driving factors due 

to decisions around the yard and a natural choke point in the network. The changing importance of train characteristics 

supports the domain expert knowledge that many factors contribute to train ETA and the impact of these factors is not 

constant. Along the route, some feature weights experience sharp changes which are due to distinct characteristics of 

the route. For example, one can observe a sharp dip at OS-point #27 in the weights corresponding to priority and to 

crew time remaining, along with the sharp increase in the weight corresponding to traffc in the same direction. This 

OS-point is located on the most signifcant hill on the route. At this location, a separate helper locomotive attaches 

to and assists some trains in climbing the hill. Availability of this locomotive is a driving factor in runtime from 

this location and its presence is captured indirectly in the feature set by the number of trains in the same direction 

without being explicitly defned as its own feature. The separation of the predictors by each origin-destination allows 

the estimator to implicitly encode unique attributes of the network which would otherwise require extensive feature 

engineering. 

5.3 Performance comparison of SVR models 

In this section, the performance of each model detailed in Section 4.1 is evaluated across all OS-points on the route. 

The four non-baseline models demonstrate increasing levels of model complexity based on the richness of features 

used in each model. 

The model results across the full route are shown in Figure 5.4 in terms of relative reduction in MAE over the 

historical median predictor (Model 0). A features set with only scalar features (Model 1), as explored in the choice 

of hyper-parameters and examination of feature weights in Sections 5.1 and 5.2, represents the largest incremental 

performance gain for every origin-destination predictor. Inclusion of the track segment feature series (Model 2) and 

40 



Figure 5.3: Feature weight change of scalar features in origin-destination SVR models across the route, Nashville (1) 
to Chattanooga (35). Feature importance is measured by absolute magnitude. 
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inclusion of all track segment feature series (Model 3) each attain small MAE improvements in addition to improve-

ments gained by the scalar features. The RBF kernel, however, does not provide any substantive performance gain over 

the fully featured linear model. The γ parameter in the RBF kernel is chosen by exploring the range γ ∈ [10−4 , 103] 

in a grid search alongside the ε and C parameters. 

The scalar feature set (Model 1) contains information representing basic relationships and understandings about 

how the rail network functions. Unsurprisingly, groups of trains such as those that are heavy and low priority generally 

run slower than the lighter high priority trains. A few counts indicating the amount of traffc on the route will be 

roughly indicative of the total amount of delay due to meets and passes. These types of relationships can be determined 

by a linear model given the information in the scalar feature set. This information would be crucial to any ETA 

prediction, but it does not provide a complete picture. 

Based on the relative performance improvements of the SVR models over the baseline, it is evident that the addition 

of the network traffc state features (Models 2 and 3) show clear advantages by providing high-resolution information 

compared to the simple counts of network traffc (Model 1). The larger gains are achieved by the track segment 

occupancy feature series, but the additional information on the direction and priority of the traffc improve the model 

performance by better informing on the likely meets and passes that will occur. For instance, the mere presence of 

another train on the route will be somewhat likely to increase runtime, but if this train is traveling in the direction 

opposing trains on the origin-destination route and has high priority then it may be highly likely to increase runtime. 

Moreover, the predictive capability of each type of traffc scenario varies. Generally, ETA error is lower for trains with 

few potential conficts than it is for trains with higher numbers of potential conficts. Additionally, ETA error is lower 
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Figure 5.4: Improvement in MAE over baseline historical median predictor for each model at all OS-points between 
Nashville (1) and Chattanooga (35). 
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for trains with large number of conficting low priority trains than it is for trains with large numbers of conficting high 

priority trains. 

Model performance varies somewhat across the origin OS-points due to the distribution of route delay, which is 

not uniform due to the locations of sidings and the likelihood of each to be used. Overall, the relative performance of 

the models with respect to each other is consistent across the route. Prediction performance relative to the baseline 

decreases closer to the destination. We expect this is due to the more unpredictable nature of operations close to rail 

yards. The factors that affect the exact arrival of a train when it gets close are not necessarily present in the data (e.g., 

ability of the yard to accept more trains, availability of the next train crew). The magnitude of mean average error for 

the SVR models follows the same decreasing trend. 

These route results are summarized in Table 5.2 in terms of mean, maximum, and minimum percent improvement 

over the baseline. The minimum improvement values are consistently observed for models close to the destination 

point and the maximum improvement is consistently observed near the beginning of the route. 

42 



Table 5.2: Comparison of SVR model performance to baseline predictor, summarized for the 35 OS-points on the full 
route. 

Predictor Mean % improvement Maximum % Minimum % 

Model 0 (Baseline) – – – 

Model 1 9.4% 14.2% 4.0% 

Model 2 12.2% 19.9% 4.6% 

Model 3 14.0% 21.6% 6.2% 

Model 4 14.3% 21.8% 7.0% 
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Chapter 6 

Results for unifed all-origin model 

In this chapter we explain the tuning process and results for the unifed all-origin model and discuss performance. 

6.1 Choosing hyper parameters for a single model 

The SVR model was tuned using an exponential grid space for the hyperparameters C and ε. Kernel hyperparameters 

(γ for RBF kernel and degree for polynomial kernel) were also tuned in the same grid space. Optimal values were 

selected from all combinations of hyperparameter values in the grid space and found to be C = 10. and ε = 0.075 

for all SVR models. The random forest regression model was tuned by exploring a grid space that included the 

hyperparameters: number of estimators, maximum features considered in split, and minimum samples required for 

node split. Values explored in the grid space were chosen based on the dimensionality and characteristics of the data 

and hyperparameter values were chosen to achieve high predictive performance and minimize overftting. 

The deep neural network model architecture is the results of extensive tuning both in the confguration of hidden 

layers (from three to ten hidden layers were tested), activation function (ReLU and tanh were tested) and optimization 

function (Adam and SGD were tested) used in the model. Ultimately, eight hidden layers are used with 200, 200, 150, 

100, 70, 40, 20, and 10 nodes in each, respectively. The rectifed linear unit (Nair and Hinton, 2010) is chosen for 

the activation function of neurons; the Adam optimizer (Kingma and Ba, 2014) is found to perform best for training 

the neural network. Early stopping criteria are employed to avoid overftting. The learning curve for the resulting 

Adam-ReLU model is shown in Figure 6.1 and compared to the same architecture using stochastic gradient descent 

optimization. The Adam optimizer not only converges faster (in 32 epochs), but also shows far less variability in 

validation loss on the way to convergence. 
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Figure 6.1: Learning curve for deep neural network showing normalized training and testing loss values. 
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6.2 Prediction results across route 

The predictions resulting from the testing data samples are grouped by the station to which they correspond. Each of 

these samples serves as an ETA prediction made for a particular train at that station, traveling towards the destination 

following station 35. The results for all six models are shown in Figure 6.2, in terms of percent improvement in 

MAE compared to the baseline statistical predictor. The results across the route are averaged and shown in Table 6.1. 

Model training times were also monitored and are shown in Table 6.2. SVR models are constrained to single-threaded 

computation in this implementation. Conversely, random forest model can be trained in parallel across CPU cores and 

the DNN model can use the GPU for computation. 

6.3 Performance discussion of unifed model 

There is a noticeable grouping of the SVR models and DNN that maintains over 20% improvement over baseline 

at stations far from the destination and decreases in relative performance approaching the destination. Linear SVR 

conspicuously drops below the baseline at the three stations closest to the destination. Meanwhile, the random forest 

model outperforms all other models at nearly every station. Its performance varies more widely across the route, but 

achieves improvements exceeding 60% relative to the baseline at stations far from the destination. Predictions at this 

point are of particular interest for the railroad because of the diffculty of prediction and the increased decision-making 
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Figure 6.2: Relative improvement of arrival time estimates at each station. 
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Table 6.1: Summary of model performance over full route 

Model Mean % Im-
provement 

Maximum % 
Improve-

ment 

Median 0.0% 0.0% 

Linear SVR 12.2% 21.0% 

Polynomial kernel SVR 15.3% 23.6% 

RBF kernel SVR 17.6% 26.4% 

Random Forest 42.1% 67.1% 

Deep Neural Net 16.3% 24.9% 
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Table 6.2: Mean model training time. 

Mean training time (seconds) 

Median 0.1 

Linear SVR 20 

Polynomial kernel SVR 11360 

RBF kernel SVR 5560 

Random Forest1 25 

Deep Neural Net2 250 

potential for hours in the future. The random forest model also see frequent prediction improvements over 50% and 

average 42% improvement over baseline across the route. 

As predictions are made closer to the destination, the mean runtime and expected mean average error (in absolute 

terms) decrease. But mean average error relative to baseline also decreases as predictions were made closer to the 

destination. This is likely due to the fact that runtimes are also less variable close to a train’s destination and the 

factors that drive the residual variability are diffcult to quantify with available data. For example trains can be held 

outside of the yard due to personnel constraints or space constraints such as lack of availability of a specifc track 

needed (e.g., for refueling or classifcation). We hope to construct features that quantify this destination yard state in 

future work. 

Fluctuating performance of all models, but particularly the random forest model is notable. This can be explained 

in part by the nonlinear dynamics of the route. Train and route features differ in their predictive impact by location 

(Barbour et al., 2018). For example, route topography plays a role in the predictive impact of train length and tonnage. 

At locations with a signifcant hill on the route, long and heavy trains will have a statistically higher runtime than 

others; but after the hill is traversed, the statistical difference in remaining runtime will diminish. We see a performance 

variation at approximately the route midpoint that is likely due to a mountain that must be traversed producing an effect 

of this sort. However, the dramatic performance variability of the random forest model is likely caused by the nuanced 

relationships that tree-based regressors can extract from categorical and binary data such as the network state used 

in this work. It is possible that predictions made by the random forest model at some of the low-performing stations 

depend highly on additional variables not present in the feature space, such as availability of helper locomotives that 

supplement train power when traversing hills that are present on the route. The training error of the random forest 

model is up to 10% lower than the testing error (in absolute terms), but the testing results are consistent through cross 

validation. 
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Chapter 7 

Prediction of arrival times at grade 

crossings 

In this chapter, we explore the problem of ETA prediction to grade crossings. Specifcally, we discuss the limitations 

and diffculties, modeling choice, and results. 

7.1 Prediction limitations 

One of the principal diffculties of making arrival predictions at grade crossings is their frequency relative to the 

sparsely-distributed timing points on the network (OS-points). This raises the notable limitation that we do not have 

ground truth arrival times at these locations. Interpolating expected arrival times at grade crossings for use in model 

evaluation would only increase error and uncertainty. Consequently, we can only judge the validity of ETA’s made 

at the upstream and downstream OS-points. The best arrival time prediction at the nearest OS-point would need 

to be made and correcting based on the precise location of the grade crossing relative to the OS-point. Additional 

factors could be relevant in calculating the correction factor, such as the last time the train encountered a meet or pass 

maneuver, which could alter its speed and acceleration state. In the scope of this work, we assess predictions made 

only to a grade crossing’s nearest OS-point because of the absence of ground truth arrival data at grade crossings. 

Despite this limitation, model performance is still indicative of that expected precisely at grade crossings, due to the 

magnitude of distance between OS-point and grade crossing being on the order of a single mile. 

This limitation can be addressed using additional data sources that railroads collects that are not available for 

research. We believe this is the correct scientifc approach that provides the community realistic estimates of the 

achievable accuracy the frst study of its kind in the United States. 
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Figure 7.1: Mean improvement percentage over baseline statistical model for predictions made to grade crossings 
associated with each OS-point. 
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7.2 Model choice and construction 

In order to predict arrival times at grade crossings, we use the individual origin-destination modelling scheme. The 

origin-destination modelling results supported the notion of location-specifc models with respect to the origin point. 

It follows that this location-specifcity would be increasingly important when building models with varying origins and 

varying destinations (grade crossings). We construct models for each two-OS-point pair on the Nashville-Chattanooga 

subdivision as a predictor of the ETA to grade crossings associated with that OS-point. We consider trains traveling 

in only the direction from Nashville to Chattanooga and place a lower bound limit on the distance between OS-points 

due to known variability factors of train runtimes between nearby OS-points for which we can not quantify with data 

inside the scope of this work. 

The mean improvement in MAE relative to the baseline predictor is shown in Figure 7.1 for predictions made to 

each OS-point aggregated across other OS-points on the network serving as origin points. 

7.3 Performance discussion of grade crossing models 

Model performance shows notable variations for predictions made between OS-points as a best proxy for nearby grade 

crossings. However, the values for improvement in MAE are very comparable to those observed in individual single-

destination models across the same track territory. A maximum mean improvement in MAE of 14% was observed at 

multiple destination OS-points. 
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7.4 Practical model implementation 

As previously discussed in Sections 1.3, 3.4, and 7.1, there are limitations in the present work inherent to the accessible 

data sources. These would need to be addressed as a necessary condition for implementing real-time grade crossing 

prediction models, but are entirely surmountable. Making simultaneous predictions for thousands of trains at thousands 

of grade crossings would require a large scale computing environment, but this is a problem well within the realm 

of technological feasibility for modern distributed computing. As noted in Section 4.3, model training required a 

signifcant amount of time up front and would need to be performed periodically to keep models up to date. But 

training may be performed offine so as to not interfere with real-time online prediction. Each prediction on test data 

in this work took on average 0.005 seconds. This is reasonable for a real-time ETA prediction system. 

Though the analysis in this work focuses on predictions made on single-track network segments, the same predic-

tion framework is immediately extensible to any network confguration. Models could be constructed of the same form 

because the nuance introduced by some geographic factors is captured inherently in historical data. We also expect 

that this approach is applicable for all freight railroads in the United States and, potentially, elsewhere in the world. 

Implementation of this work fts into the IEEE Standard 1570-2002 for highway-rail intersection interface (dis-

cussed in Section 1.1) as a long-horizon train detection system that informs traffc management systems. Ouyang 

et al. (2018) addressed strategic incidence response planning in the presence of correlated disruptions. Specifcally, 

where assets and resources should be positioned in anticipation of potential accidents when there is a risk of system-

atic disruption to the transportation network. They note, in particular, trains blocking railroad crossings as a common 

example. The joint consideration of our work on real-time prediction with strategic planning could enable robust 

emergency response operations under the inevitable disruptions. 
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Chapter 8 

Conclusion 

This work presents a data-driven approach to predict ETAs at grade crossings on freight rail networks on long time 

horizons necessary for early warning applications and emergency management systems. The ETA generation problem 

is posed as 1) a series of independent origin-destination ETA prediction problems to capture location specifcity and 

avoid bias in the training data of a single general model due to time varying features and 2) a unifed all-origin 

prediction model to utilize a greater amount of training data in a single model and leverage more advanced algorithms. 

In terms of the origin-destination models, the problem is tractable for sparse rail networks in the United States 

due to relatively low network complexity that reduces the number of relevant origin-destination pairs. This approach 

is shown to demonstrate specifcity with respect to distinct feature weights (i.e., relative importance) between origin-

destination models. Compared to naive prediction based on historical median runtimes, an average improvement of 

14% and maximum improvement of over 21% are achieved by the best performing SVR models. 

In terms of the unifed all-origin modeling scheme, six models including one statistical model, three SVR models, 

a deep neural network model, and a random forest regression model are implemented. Performance of the models is 

analyzed at locations across the study area and found to vary, particularly for the random forest model. The random 

forest model achieves the best performance yet realized on this dataset, with an average 42% improvement in MAE 

relative to the baseline statistical predictor. The average improvement of the random forest model and the maximum 

predictive improvements of over 60% are actionable for freight rail operational decision making and potentially useful 

in grade crossing applications. 

Based on these fndings, our future research steps include the following. Due to the large variance caused by 

recrews, we are interested in developing a data-driven classifer to preemptively classify trips that are likely to be 

recrewed. This step is necessary because ETA estimates produced by models trained on data from non-recrewed trains 

will not generalize to recrewed trains because the ETA of recrewed trains depends on factors outside the scope of this 
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work. For the trains that are not likely to be recrewed, further improvements in the ETA accuracy are possible with the 

construction of additional targeted traffc features constructed for route topography and meet-pass events. Considering 

externalities such as weather, as well as ancillary operations such as scheduled track work or slow orders, may also 

increase prediction accuracy. We are also interested in building models on the state of the origin or departure yard, 

which may create delays that cascade onto the line of road. Further studying the effects of each input feature to the 

prediction result may provide practical insight into delay causes and mitigation. The comparison of these results to 

optimization-based simulation as well as the exploration of more sophisticated deep learning approaches are also areas 

of future exploration. 

This work showed improved results for ETA estimation compared to the state of practice, which can be valuable to 

emergency vehicle scheduling and management around highway-rail grade crossings. In implementation, the real time 

up-to-the-minute reporting of arrival times at grade crossings will also require the fusion of additional data sources 

such as real-time GPS data that is collected by the railroads but outside the scope of this work. But more improvements 

will require model enhancements that incorporate predictive rail traffc evolution and incorporate more of the railroad 

operational factors that contribute to primary and knock-on delay. 
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Appendix A 

Estimation of individual passenger train 

delays for ETA prediction at grade crossings 

A.1 Introduction 

For a given train, the delay is defned as the difference between the true running time and the free running time. The 

variabilities associated with ancillary train operations (e.g., equipment maintenance, station dwell time, weather) may 

contribute to the travel time delay, which consequently impacts the overall variability and predictability of railroad 

operations (Dingler et al., 2010). In the United States, Amtrak passenger trains have priority over freight trains, and 

yet the average on–time rate of Amtrak is less than 75% (Bureau of Transport Statistics, 2017). In the presence of this 

variability, it is important to investigate train delays as constituent parts of larger efforts to predict train ETAs at grade 

crossings and enable proactive safety applications. 

The objective of this appendix is to develop new data-driven methodologies to estimate passenger train delays 

and to assess their performance on a large dataset of more than 100,000 trips. In the past, many analytical models 

and simulation approaches have been proposed to estimate train delays. While these approaches have merit due 

to their elegance (analytical approaches) and realism (simulation based approaches), application of either approach 

constitutes a major model building or calibration task. For complex systems, analytical methods require some degree 

of abstraction to maintain tractability. Simulation based approaches can model the complexity of the realistic train 

operations, but require extensive effort to accurately calibrate the model. 

With the recent advances in sensing and communication technology, train positioning data is now available to 

improve train delay estimation through data-driven methods. For example, regression models can be constructed to 

estimate delay, where the parameters associated with the regression models are calibrated by learning from historical 
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data. Compared to the analytical methods and simulation methods, data-driven approaches can be easily generalized 

and deployed to estimate train delays for any train, as long as training data is available. Note this necessarily pre-

vents the applications of these methods for scenario planning, which analytical or simulation approaches are more 

appropriate. 

The main challenge associated with data-driven approaches for passenger train delay estimation is data availability. 

First, accurate data may not be available, or it may be sparse or incomplete. For example, the Amtrak data considered 

in this work does not contain records between stations, and no information is publicly available about the freight traffc, 

which shares the same track. Moreover, the data is incomplete, and some delays are never recorded. In spite of these 

limitations, this work shows standard regression models can signifcantly improve passenger train delay estimation 

compared to the predictions based on the scheduled time table. While additional refnements are certainly warranted, 

data-driven approaches appear promising for delay estimation. The main contributions of this section are summarized 

as follows: 

• This section proposes two data-driven approaches for passenger train delay estimation. A historical regression 

model is designed to predict train delays before the current trip starts, and online regression models are proposed 

to provide a more accurate train delay estimate after the trip begins, using the delay recorded at the upstream 

station on the current trip and the delay recorded by other nearby trains. 

• Data from 282 Amtrak trains (over 100,000 trips), are used to illustrate and test the proposed algorithms. The 

estimation results show the proposed historical regression model improves the route mean square error RMSE 

by 12% and the online regression model improves the RMSE by 60%, compared to prediction based on the 

scheduled time table. 

The reminder of this Appendix is organized as follows. In Section A.2, data-driven autoregressive approaches 

are proposed for train delay estimation. The proposed methods are implemented and tested with Amtrak data, and 

the estimation results of the proposed methods are shown in Section A.3. In Section A.4, we conclude the proposed 

methods signifcantly improve delay estimation compared to the scheduled time table, and note the need for further 

work on capturing knock-on delays and other delay related factors. 

A.2 Methodology 

In this Section, we develop two approaches to estimate train delays. The frst method is a historical regression model 

developed by assuming delays from one trip to the next follow an vector autoregressive process. This model predicts 

train delays at each station before the current trip starts based on the delay recorded in the past trips. Next, two 

variations of an online regression model are developed, which aims at providing accurate train delay estimation by 
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using delay information of the train at earlier stations long the current trip, as well as delay information of other trains 

that share the same corridor. 

A.2.1 Historical regression model 

Passenger train delay can be assumed to follow a vector autoregressive process (Lutkepohl, 2007) , because passen-¨ 

ger trains operate on a fxed frequency (e.g., daily) and schedule. As a result, prior delays on previous trips bring 

information to estimate the train delay at each station for the current trip. The vector autoregressive process predicts 

train delays at each station along the route simultaneously based on the prior delays on previous trips. The historical 

regression model constructed by a vector autoregressive process of order p is described as follows: 

i i i yt = A1yt−1 + · · · + Apyt−p + ν + ut, (A.1) 

� �T 
i i i i RK i where y = y · · · , y · · · ∈ denotes the vector of train delays on trip t for train i. Here, yk,t is a t 1,t, k,t, , yK,t 

scalar that denotes the train delay at station k on trip t for train i, with k = 1, · · · ,K, and K is the total number of 

stations on the train trip. The matrix Am ∈ RK×K , with m = 1, · · · , p, denotes the relationships of delays among 
T the current and past trips, and among stations. The variable ν = (ν1, · · · , νK ) ∈ RK is an intercept term which 

T allows constant delays. The variable ut = (u1, · · · , uK ) ∈ RK is the white noise which denotes the error between 

the predicted ŷt and the true yt, where ŷt is given as: 

ŷt = A1yt−1 + · · · + Apyt−p + ν. (A.2) 

Model (A.1) is also called a vector autoregressive process with lag p, since the vector yt is computed using only 

the system state in the previous p trips. To apply the model, we frst select p, and then train the parameters Am and ν 

by using a least squares ft on the historical data. Then, the vector autoregressive process with the trained parameters 

can be used for prediction. 

A.2.2 Online regression model 

The historical regression model can predict train delays at each station before the current trip starts. After the trip 

begins, the accuracy of the train delay estimation at a station can be further improved if delays of the train at its 

upstream stations are known, and if the delays of another trains that may interact with the current train are known. 

In this section, an online regression model is proposed to incorporate such information for train delay estimation by 
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using an autoregressive process (Cook, 1985): 

i i i yk,t = a1yk−1,t + · · · + apyk−p,t + ck +Φk,t 
i + uk,t, (A.3) 

i where yk,t is a scalar that denotes the delay of train i at station k during trip t. The parameters am and ck denote the 

relationship of train delays among the current and past stations. The term uk,t in (A.3) is a scalar which denotes the 

error associated with the model. The predictor ŷi is given as: k,t 

i i ŷi = a1y + · · · + apy + ck +Φ
i 

k,t k−1,t k−p,t k,t. (A.4) 

The term Φi denotes the delays of another trains that may contribute to the delay of train i at station k. This term k,t 

is modeled as: 

j Φi k,t = Σ( ˜ ˜ bj y , j,k,t)∈ ˜ ˜ Ωi,k,t k,t 
(A.5) 

i j where Ωi,k,t denotes the set of train–station pairs that contribute to yk,t. The term y˜ is the delay of train j at station 
k,t̃  

k̃ during trip t̃. Note that station k̃ is not necessarily the same station as k since the delay of train j at other stations k̃ 

may also infuence the delay of train i at station k (e.g., if train i and train j share the same track, but move in opposite 

directions). Moreover, trip t̃  must be distinguished from t since it is a trip index for train j. The parameter bj is the 

i factor that indicates how the delay of train j at station k̃ on trip t̃ impacts yk,t. 

The existence of Φ can be interpreted as follows. If two trains are closely scheduled on a single track line and 

the front train is delayed at a station, then it is possible for the following train to experience knock–on delay. Note 

that because Amtrak shares track with freight trains, and freight train positioning data is not publicly available, the 

knock–on delay caused by freight traffc cannot be captured when this model is implemented with Amtrak data only. 

We also consider two variations of the online regression model (A.3). The frst one is a predictor which is con-

structed based on the assumption that the delay of train i at station k is simply equal to the delay of the same train at 

station k − 1. In this case, the model (A.3) becomes: 

i i yk,t = yk−1,t + uk,t. (A.6) 

The second variation of regression model does not consider the delays caused by the interactions among trains. The 

simplifed (interaction free) model is given as: 

i i i yk,t = a1yk−1,t + · · · + apyk−p,t + ck + uk,t, (A.7) 
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As a result, model (A.6) can be viewed as a baseline approach where delay is assumed to propagate from the upstream 

station to the downstream station. Model (A.7) captures non–constant delay relationship between stations by training 

the parameters am and ck, while model (A.3) adds another component Φ to incorporate the delay caused by interactions 

among trains. 

A.3 Implementation and results 

The proposed methods are tested with Amtrak passenger train data released by AmtrakStatusMaps (2015). The histor-

ical regression model (A.2), the online baseline model (A.6), the online regression non–interacting model (A.7), the 

online regression interacting model (A.3), and the scheduled time table are tested and compared using data from 282 

Amtrak trains (or 120 trains in the case of the interacting model (A.3) since the other trains have an empty interaction 

set Ωi,k,t). 

The general procedure to evaluate the models is as follows. First, structural parameters of each regression model 

must be selected (e.g., the lag p and the interaction set Ωi,k,t). Second, the available data is partitioned into a train-

ing dataset and a test dataset. Third, the parameters of each regression model are determined through least squares 

estimation on the training dataset. Finally, the model is evaluated on the test dataset to determine the accuracy of the 

predictor. 

A.3.1 Data description and training data selection 

Amtrak data is used as an example of passenger train data to illustrate and test the proposed method. The dataset 

contains all Amtrak passenger train arrival and departure data at each station from 2006 to 2013. The dataset is 

released by AmtrakStatusMaps (2015) and is publicly available. For each train and each trip, the following data are 

recorded: station code, scheduled arrival day and time, scheduled departure day and time, actual arrival time, actual 

departure time and comments. 

After an exploration of the dataset, it is found that the Amtrak data is coarse and a number of data records are 

missing. In particular, most stations do not have records for actual train arrival times, and some stations do not have 

records for scheduled train arrival times. However, nearly all the stations have records for the scheduled departure time 

and the actual departure time. As a result, the time difference between scheduled departure time and actual departure 

time is used to denote travel time delay in the following experiments. 

A year of delay data of a typical train (train 68 in 2013) is used as an example to visualize the delay (Figure A.1). 

The train travels daily from Montreal (MTR) to New York, and stops at 18 stations. In Figure A.1, two data patterns 

can be observed from the recorded delays. First, some stations are more likely to experience delay compared to the 
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Figure A.1: Delays for Amtrak train 68 in 2013. Six of the 17 stations along the route are labeled. The color in the 
fgure denotes departure delay at each station for each trip. Missing data are shown in white. 
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others (e.g., Ticonderoga, NY (FTC) compared to Hudson, NY (HUD)). Second, once delay occurs on a trip, the delay 

is likely to last for several stations. Such data patterns are also commonly observed on other Amtrak trains. 

Data from 282 Amtrak trains from 2011 to 2013 are used to train and test the proposed algorithms, which consists 

of more than 100,000 train trips. For each train, data from 2011 and 2012 are used as training data, while the frst 

30 trips of 2013 for each train are used as test data. Note that the frst 30 trips may occur over one to several months 

depending on the frequency at which the train operates (e.g., daily, weekly). We also note that AmtrakStatusMaps 

contains data for more than 450 Amtrak trains from 2011 to 2013, however a regression model cannot be constructed 

for all trains. The vast majority of excluded trains were subject to a route re-confguration (e.g., adding a station) 

during the three year period, meaning that a complete set of training or test data is not available. A small subset of 

trains without schedule reconfgurations were also excluded due to a large amount of missing data. These are practical 

issues that must be addressed before data-driven methods can be widely deployed. 

When models (A.2), (A.6) and (A.7) are tested, data from all 282 Amtrak trains are used as training data. The online 

regression interacting model (A.3) is evaluated on a smaller subset consisting of 120 trains, where the interacting set 

Ωi,k,t is non-empty. 
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A.3.2 Cross validation 

In order to test if the results of the proposed methods are sensitive to the training data, a k–fold cross validation 

(Kohavi, 1995) is used. The training data is partitioned to fve sets. Each model is run fve times, and for each run, 

a district set composed of four of the fve sets are used to construct the training dataset. Different from the standard 

k–fold cross validation where the test dataset is also changed during each fold, the algorithm is tested with the data in 

2013, to avoid the scenario that the model is trained with data from the future and tested on the past. 

A.3.3 Selection of structural regression parameters 

We briefy describe how the order p for models (A.3), (A.2), and (A.7) is selected, and how the set Ωi,k,t is determined 

when model (A.3) is deployed. 

When the historical model (A.2) is implemented, multiple p values have been tested, and it is found that the 

historical model has the overall best performance when the order p is set as one. Practically, the order p associated 

with the historical model for each train can also be determined individually by minimizing the fnal prediction error 

following the criteria in Lütkepohl (2007). When the online regression models (A.3) and (A.7) are implemented, the 

order p is also chosen as one. Because once the train delay at the upstream station is known, the delays of the train 

from the stations further upstream do not contribute to the estimation accuracy. This assumption was also tested by 

evaluating larger orders p for the model, which caused slight decreases in the predictive accuracy. 

When the online regression interacting model (A.3) is implemented, the set Ωi,k,t for each station is constructed 

according to the following assumption. If train j is scheduled at a the same or neighboring station k̃ within an hour 

of train i at station k, the then the delay of train j at station k̃ is considered as part of the regression. As a fnal step 

we prune any trains that are scheduled at the same station but do not share the same track, which is common at major 

terminals such as Chicago’s Union Station. 

A.3.4 Regression results without interactions among trains 

In this section, the historical model (A.2) and the online models (A.6) and (A.7) are trained and tested with the data 

from the 282 Amtrak trains. 

The average RMSE ei of the proposed models for train i is computed as follows: 

ei = 

⎛ ⎜⎜⎝ 

vuuuuut 

⎞ ⎞ ⎞ ⎛ ⎛ X X XN T K 

N T K 
n=1 t=1 k=1 

⎟⎠ ⎠ 
⎟⎟⎠ 

1 ⎜⎝ 
1 ⎝ 1 2 , u n,k,t (A.8) 

where N denotes the total number of cross validations and T denotes the total number of trips to be estimated. The 
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Figure A.2: Ranked average MSE associated with scheduled time table, models (A.2), (A.6), and (A.7) for each train. 
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Table A.1: Average RMSE of the proposed methods. The improvement shown in the table are percentage 
improvements of proposed methods compared to the scheduled time table with respect to RMSE 

Method RMSE (min) Improvement 
Scheduled time table 19.4 N/A 

Historical regression model 17.0 12% 
Online baseline model 8.4 57% 

Online regression model 7.7 60% 

term un,k,t is the model error of the tth trip for the nth cross validation for train i. The mean square error is computed 

and averaged over the T estimated trips, and then averaged over the N cross validations. In this simulation, T = 30 

and N = 5. 

The ranked average RMSE of the proposed methods and the scheduled time table for each train are shown in Figure 

A.2. The average RMSE over all trains for each predictor is summarized in Table A.1. The historical regression model 

has better estimation accuracy compared to the scheduled time table, since delays from the past trips are incorporated 

in the model. Both online algorithms perform signifcantly better than the historical model, because online delay 

information from the upstream station are used to estimate the delay for the downstream station. Moreover, the online 

regression model (A.7) performs better than the online baseline model (A.6), because it is able to incorporate the 

potential delay that may occur between the current station and the next station, by training the parameters am and ck. 

In summary, compared to the scheduled time table, the historical regression model (A.2) improves the RMSE by 12%, 

and the online regression model (A.7) improved the RMSE by 60%. 

Note it is not possible to compactly display the calibrated model parameters for each train and for each model 

within the space of this report. In order to provide more details of how the regression models perform, we again use 
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train 68 as an example. The prediction results by the scheduled time table and historical model (A.2) of the frst 5 

of the 30 trips for train 68 are shown in Figure A.3a, and the estimation results by online models (A.6) and (A.7) are 

shown in Figure A.3b. Again, we can conclude the historical model performs better than the scheduled time table, and 

the online models can further improve the delay estimation accuracy compared to the historical model. 

(a) Historical model and time table (b) Online models 

Figure A.3: Five trips delay estimation results of train 68 (top to bottom). The left fgure shows the results for the 
scheduled time table and the historical regression model. The right fgure shows the results for the online regression 

models. 
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A.3.5 Regression results with interactions among trains 

Next, the online regression interacting model (A.3) is tested. The online interacting model (A.3) is compared with 

the online non–interacting model (A.7) to investigate if modeling the delay caused by interaction among trains may 

help to improve the estimation accuracy. It is found that the RMSE difference between the two models for most of the 

trains are less than 2%, and the average RMSE over all trains of the two models are computed as 7.42 and 7.40 min, 

respectively. 
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The online regression interacting model (A.3) tends to capture the knock–on delay effect by including the term Φ. 

However, the performance of these two models are very close. After an investigation on the trained parameters bj , it 

is found the values of bj are nonzero and they do infuence the fnal estimation, however, it does not outperform the 

online regression model (A.7). 

One possible explanation is as follows. Once a train is delayed at a station, it is observed that the delay will 

propagate for several stations. As a result, it is usually the case that both the front train and the following train are 

delayed for several consecutive stations on a trip. While it is true that the following train is delayed due to an interaction 

with the leading train, the online regression model (A.7) is able to capture this knock–on delay by modeling the delay 

propagation from its upstream station for all stations except the frst one, where the delay is initiated. As a result, 

similar performance is found for the online regression model (A.7) and the online regression interacting model (A.3). 

A.4 Summary of passenger train fndings 

This Appendix studies the passenger train travel time delay problem by using data-driven approaches. A historical 

regression model is proposed to predict train delays before the current trip starts, and an online regression model with 

two variations are developed to estimate train delays using delay information from current trips recorded at upstream 

stations and other related trains. The proposed methods are tested with Amtrak passenger train data. Compared to the 

prediction based on the scheduled time table, the historical regression model (A.2) improves the RMSE of the delay 

estimation by 12%, and the online regression model (A.7) improves the RMSE by 60%. 

This is the frst use of data-driven approaches to study passenger train delays in the United States with the goal 

of enabling proactive safety at grade crossings. It shows standard regression models can signifcantly improve the 

travel time delay estimates compared to the scheduled time table even though data are coarse and limited. The primary 

shortcoming of the data is the lack of information about freight trains that operate concurrently on the same tracks. 

This motivates the focus on freight train data to further enhance the accuracy of the estimates, which is found in the 

main body of this report. 
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